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Abstract Optimum allocation of resources is of
fundamental importance for the efficiency of breeding
programs. The objectives of our study were to (1)
determine the optimum allocation for the number of lines
and test locations in hybrid maize breeding with doubled
haploids (DHs) regarding two optimization criteria, the
selection gain DGk and the probability Pk of identifying
superior genotypes, (2) compare both optimization cri-
teria including their standard deviations (SDs), and (3)
investigate the influence of production costs of DHs on
the optimum allocation. For different budgets, number
of finally selected lines, ratios of variance components,
and production costs of DHs, the optimum allocation of
test resources under one- and two-stage selection for
testcross performance with a given tester was determined
by using Monte Carlo simulations. In one-stage selec-
tion, lines are tested in field trials in a single year. In two-
stage selection, optimum allocation of resources involves
evaluation of (1) a large number of lines in a small
number of test locations in the first year and (2) a small
number of the selected superior lines in a large number of
test locations in the second year, thereby maximizing
both optimization criteria. Furthermore, to have a real-
istic chance of identifying a superior genotype, the
probability Pk of identifying superior genotypes should
be greater than 75%. For budgets between 200 and 5,000
field plot equivalents, Pk > 75% was reached only for
genotypes belonging to the best 5% of the population. As
the optimum allocation for Pk(5%) was similar to that
for DGk, the choice of the optimization criterion was not
crucial. The production costs of DHs had only a minor

effect on the optimum number of locations and on values
of the optimization criteria.

Keywords Optimum allocation Æ Selection gain Æ
Probability Æ Superior genotype Æ Monte Carlo
simulation

Introduction

Optimum allocation of financial and breeding resources
is of fundamental importance for the efficiency of
breeding programs and selection strategies. Advances in
the production of doubled haploids (DHs) by in vivo
haploid induction (Bordes et al. 1997; Röber 1999) offer
a promising alternative to recurrent selfing for rapid
inbred line development in hybrid maize breeding.
Currently, DHs are adopted as a routine method in
commercial maize breeding programs in North America
(Seitz 2005) and Europe (Schmidt 2004). Their efficient
use requires an optimization of the entire breeding
scheme in order to maximize progress from selection.

A selection strategy may involve one or several stages
of selection. In the latter case, the initial population of
lines is evaluated in 1 year and a superior subset is se-
lected for further evaluation and selection in subsequent
year(s). To quantify the progress from k selection stages,
various criteria have been used such as (1) the selection
gain (DGk) (Cochran 1951; Utz 1969) and (2) the prob-
ability of identifying superior genotypes (Pk) (Keuls and
Sieben 1955; Robson et al. 1967; Johnson 1989; Knapp
1998). In recurrent selection, DGk represents the most
widely used criterion to compare different methods and
optimize the selection progress in population improve-
ment (cf. Choo and Kannenberg 1988; Gallais 1991).
For a given population, DGk is a function of the heri-
tability (h2) and selection intensity (ia), and increases
with larger values for both parameters (Bernardo 2002).
Heritability increases with an increasing number of test
locations, years, and replications in performance trials,
whereas ia depends on the selected fraction (a) and the
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probability distribution of the lines. With a fixed number
of finally selected lines (Nf), ia increases with a larger
number of initial lines. Hence, a plant breeder with a
fixed budget has to find a compromise between (a) the
number of initial lines and (b) the intensity of their
testing as determined by the number of test locations,
years, and replications. This requires an optimization of
the test resources for each breeding scenario.

For DGk the optimum allocation of test resources for
a fixed budget was investigated with numerical integra-
tion, assuming an infinite population size (Utz 1969),
and with stochastic simulations, assuming a finite pop-
ulation size (Finney 1966; Young 1976). However, pro-
duction costs of DHs have so far not been taken into
account. In addition, most studies on the optimum
allocation of resources were conducted more than
30 years ago and the limited computing power available
at that time restricted the number of scenarios consid-
ered.

In addition to medium- and long-term germplasm
improvement, plant breeders are forced to focus on
rapid development of competitive varieties. For the latter
purpose, Pk represents a suitable criterion (Johnson
1989). For a given population and a fixed number of Nf,
Pk is increased by (1) an increasing number of lines in
order to have at least the number of desired superior
genotypes in the initial sample and (2) an increasing h2

to warrant a high probability of detecting them. For
one-stage selection, Robson et al. (1967) and Johnson
(1989) investigated the impact of h2, the initial sample
size, and Nf on the probability (P1) that all Nf have
genotypic values exceeding a given threshold. Knapp
(1998) extended this approach to marker-assisted selec-
tion. Nevertheless, these studies investigated Pk only for
given values of h2 and a, disregarding the optimum
allocation of resources. Furthermore, DGk and Pk have
not yet been compared for one- and two-stage selection.

In this study, we optimized the allocation of test re-
sources in hybrid maize breeding with DHs under one-
and two-stage selection for testcross performance with a
given tester by using Monte Carlo simulations. For
different assumptions regarding the budget, ratio of
variance components, and value of Nf, we (1) deter-
mined the optimum allocation of the number of lines
and test locations for DGk and Pk, (2) compared both
optimization criteria including their standard deviations,
and (3) investigated the influence of production costs of
DHs on the optimum allocation of test resources.

Materials and methods

Selection strategies

In a standard maize breeding scheme (Fig. 1), a total of
N1 DH lines generated from one or several F1 crosses via
in vivo haploid induction are available at the beginning
of the evaluation and selection process. A certain

number Nf of phenotypically best DH lines are selected.
We compared Nf=1 and Nf=5. The target variable Y is
the genotypic value of testcross performance with a gi-
ven tester T for a certain trait or index of traits. The
tester can be any population with an arbitrary structure
such as an inbred line, single cross, or random mating
population. With one-stage selection, selection is based
on field tests in a single year. With two-stage selection,
field tests are conducted in 2 years with a subset of the
most superior lines N2 selected after the first year being
evaluated in the second year. At stage j (j=1, 2), selec-
tion among Nj DH lines is based on variable Xj, the
phenotypic mean of testcross performance at this stage
with tester T evaluated in Lj locations with Rj replica-
tions. At stage j=2, the selection among lines could
alternatively be based on an index of their performance
in the first and second year. However, this would affect
the optimum allocation and the selection gain only
marginally (Utz 1969; Young 1976). Without an upper
limit on Lj, Rj=1 is optimal regarding DGk (Sprague and
Federer 1951; Utz 1969). Thus, we set Rj=1.

Economic frame and quantitative-genetic parameters

We investigated three assumptions (C=0, 0.5, 1) con-
cerning the production cost of one DH line relative to

DH induction 

x   Tester 

P1 x P2

k = 1 k = 2

Nf

N1N1

N2

Nf

DH population

Fig. 1 Hybrid maize breeding scheme with production of doubled
haploid (DH) lines, their testcross progenies and testcross evalu-
ation in several test locations with one-stage (k=1) or two-stage
selection (k=2). (N1=number of initial lines; N2=subset of
superior lines selected after the first stage of two-stage selection;
Nf=number of finally selected lines)
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the cost of one field plot for evaluating testcross
progenies. For instance, C=0.5 means that the pro-
duction cost of one DH line is equal to half the cost of
one field plot. C=0.5 corresponds to the actual costs of
DH production in breeding companies most advanced
in the DH technique (Seitz, personal communication).
C=1 is a realistic assumption at the beginning of
establishing the DH technique in a breeding program.
With further improvements in the DH technique, the
costs of DH production may become negligible in the
future (C=0).

A fixed total budget B for (1) producing the DH lines
and (2) evaluating their testcross progenies in k selection
stages was defined in terms of testcross plot equivalents
as

B ¼ N1C þ
Xk

j¼1
NjLjRj ð1Þ

assuming equal plot sizes in all selection stages. We
compared three budgets with B=200, 1,000, 5,000 plot
equivalents. An overview of the notation used
throughout this treatise is given in Table 1.

Three ratios of variance components (rg
2:rgl

2 :rgy
2 :

rgly
2 :re

2) were considered, where rg
2 refers to the genotypic

variance, rgl
2 to the variance of genotype · location

interactions, rgy
2 to the variance of genotype · year

interactions, rgly
2 to the variance of genotype · location ·

year interactions, and re
2 to the error variance. We set

VC1=1:0.25:0.25:0.5:1, VC2=1:0.5:0.5:1:2, and VC3=
1:1:1:2:4, resulting in a heritability on a plot basis of

0.33, 0.20, and 0.11, respectively. These ratios were
chosen based on combined analyses of variance of grain
yield in (1) recent official maize variety performance tests
in Germany (VC1, Laidig, personal communication), (2)
DH populations of commercial breeding programs
(VC2, Gordillo and Geiger 2004), and (3) official maize
variety performance tests in Southwest Germany (VC3,
P. Herrmann, unpublished data).

Simulation model

Genotypic and phenotypic values were generated sepa-
rately for each combination of the above factors.
Genotypic values were sampled from a normal distri-
bution N(0, rg

2). Non-genetic values were sampled from
a normal distribution Nð0; r2

mj
Þ; with

r2
mj
¼ r2

gy þ
r2
gl

Lj
þ

r2
gly

Lj
þ r2

e

LjRj
ð2Þ

representing the non-genetic variance. Phenotypic values
were then generated by adding non-genetic values to the
genotypic values. For two-stage selection, genotypic and
phenotypic values were sampled out of a multivariate
normal distribution MVN(l, V) with lT=(0, 0, 0) and

V ¼
r2
g r2

g r2
g

r2
g r2

x1 covx1x2

r2
g covx1x2 r2

x2

0
B@

1
CA: ð3Þ

The covariance between the phenotypic values at stage
j=1 and j=2 was determined as covx1x2 ¼ r2

g þ
ðLcr2

glÞ=ðL1L2Þ; with Lc representing the number of
locations common to both selection stages (Utz 1969).
We assumed Lc=L1. The two optimization criteria and
their SDs were then calculated and stored. This proce-
dure was repeated for each factor combination and
choice of Nj and Lj, with a new set of realizations of
random variables (further referred to as runs). The
number of runs required to warrant an accuracy of 0.01
for the optimization criterion was calculated based on
the standard error of the arithmetic mean as
ð3SD=0:01Þ2 (Berry and Lindgren 1996). Between 7,000
and 70,000 simulation runs were required for the dif-
ferent scenarios.

Optimum allocation and optimization criteria

An admissible allocation of test resources refers to tuples
(Nj, Lj) for all stages j, such that Eq. 1 is satisfied. An
element (Nj

*, Lj
*) is denoted as an optimum allocation if

it maximizes the optimization criterion in the set of
admissible allocations. For each run, the mean geno-
typic value of the Nf selected lines was calculated and the
selection gain was estimated by averaging over all Monte
Carlo runs for the allocation considered DĜk

� �
: The

variance among these runs was used to calculate the

Table 1 Notation used in this treatise

h2 Heritability
ia Selection intensity for a certain selected

fraction a=Nf / N1

j Selection stage
B Fixed total budget in field plot equivalents
C Production costs of one DH line relative

to the costs of one field plot for evaluating
testcross progenies

DH Doubled haploid
DGk Selection gain after k stages of selection
DĜk DGk estimated by Monte Carlo simulations
DĜ�k Value of DĜk at the corresponding optimum

allocation (Nj
*, Lj

*)
Nf Number of finally selected lines
Nj, Lj, Rj Number of lines, locations, or replications

at stage j in performance trials
Nj

*, Lj
* Optimum number of lines and locations

maximizing the optimization criterion
in the set of admissible allocations

Pk(q) Probability of identifying lines with genotypic
values exceeding a fixed (100�q)% quantile
of the corresponding normal distribution
N(0, rg

2) after k stages of selection
P̂kðqÞ Pk(q) estimated by Monte Carlo simulations
P̂ �k ðqÞ Value of P̂kðqÞ at the corresponding optimum

allocation (Nj
*, Lj

*)
VC Ratio of variance components

rg
2: rgl

2 : rgy
2 : rgly

2 : re
2
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corresponding SD SDDĜk

� �
: In addition, the number of

selected lines with genotypic values exceeding a fixed
(100�q)% quantile of the corresponding normal distri-
bution N(0, rg

2) was determined for each run and divided
by Nf. The probability of identifying superior genotypes
was estimated by averaging these values over all Monte
Carlo runs for the allocation considered P̂kðqÞ

� �
: The

variance among these runs was used to calculate the

corresponding SD SDP̂kðqÞ

� �
: We examined q values of

25, 5, 1, and 0.1%, with corresponding standardized
genotypic thresholds of 0.67449, 1.64485, 2.32635, and
3.09023, respectively.

The optimum allocation of test resources for each
scenario was obtained by a grid search in Z, the space
of admissible resource allocations. For instance, for
B=200, Nf=1, VC1, C=0, and one-stage selection, the
optimum choice of N1 was determined by varying the
selected fraction a1 between 0.01 and 0.30 for each
L1 between one and a number that allowed a clear
identification of the optimum of L1. Thus, at least 100
calculations were performed to identify the optimum
allocation for each scenario. Let OC represent the
optimization criterion DGk or Pk(q). Let (Nj

o, Lj
o) be the

allocation, where OC assumes its numerical maximum
value in the simulations

OC No
j ; L

o
j

� �
¼ max
ðNj;LjÞ�Z

OC Nj; Lj
� �

: ð4Þ

Since OC is only estimated with a precision of 0.01, the
optimum allocation (Nj

*, Lj
*) was determined following

Utz (1969) such that the number of locations was min-
imum among all allocations within 0.01 drop-off of
OC(Nj

o, Lj
o), i.e.,

L�j ¼ min
Lj

Nj; Lj
� �

�ZjOC No
j ; L

o
j

� �
�OC Nj; Lj

� �
\0:01

n o
:

ð5Þ

The reason being that breeders prefer for technical rea-
sons tests in fewer locations if this affects the OC only
marginally.

The values of each optimization criterion at its cor-
responding optimum allocation (Nj

*, Lj
*) were denoted as

DĜ�k and P̂ �k ðqÞ: Simulation programs were written in C
and implemented in the statistical software R (R
Development Core Team 2004).

Results

The optimization criteria were similarly affected by
deviations from the optimum allocation of test resources
for one- and two-stage selection, Nf=1 or 5, and pro-
duction costs of DHs. Thus, only response curves for
DĜ1 and P̂1ð1%Þ as a function of L1 were presented for
varying budgets and ratio of variance components
assuming one-stage selection, Nf=1, and C=0.5
(Fig. 2). With increasing L1, the optimization criteria

DĜ1 and P̂1ð1%Þ increased up to an optimum and
decreased slightly thereafter. Both response curves were
flat in the vicinity of the maximum. The increase in
DĜ1 and P̂1ð1%Þ was largest between L1=1 and L1=4.
Curves for SDP̂1ð1%Þ displayed similar trends as those for
P̂1ð1%Þ; with a maximum at the optimum allocation of
P̂1ð1%Þ: In contrast, curves for SDDĜk

decreased with
increasing L1.

The consequences of one-stage versus two-stage
selection, varying Nf, and budgets on the optimum
allocation of test resources and optimization criteria
were hardly affected by the ratio of variance components
and production costs of DHs (data not shown). Hence,
the results on the influence of the former group of fac-
tors were presented exemplarily for intermediate values
VC2 and C=0.5 (Table 2). The optimum number of
initial lines N1

* and test locations for two-stage selection
was about twice as large as for one-stage selection. This
was due to the optimum allocation of two-stage selec-
tion, which comprised a large number of initial lines N1

*

tested in a small number of test locations L1
* at the first

stage, and a small number of selected lines N2
* tested in a

large number of test locations L2
* at the second stage.

Furthermore, under the same allocation of resources
DĜ�k ; and values of P̂kð5%Þ; P̂kð1%Þ; and P̂kð0:1%Þ were
on average 20, 30, 50, and 80%, respectively, higher than
for one-stage selection. Reducing Nf from five to one
resulted in (1) smaller values of Nj

* but larger values of
Lj
* in the last selection stage, and (2) an increase in DĜ�k

and corresponding values for P̂kð5%Þ; P̂kð1%Þ;
and P̂kð0:1%Þ of 20, 30, 60, and 110%, respectively.
However, SD of these estimates were also increased by
more than 60% on average. For one-stage selection,
increasing the budget from B=200 to B=5,000 resulted
in a more than 10-fold increase in N1

* and a twofold
increase in L1

*. For two-stage selection, N1
* and N2

* in-
creased more than 15- and 5-fold, whereas L1

* and L2
*

increased twofold and threefold, respectively. In addi-
tion, the average increase in DĜ�k and corresponding
values for P̂kð5%Þ; P̂kð1%Þ; and P̂kð0:1%Þ was 65, 125,
300, and 650%, respectively.

The influence of different ratios of variance compo-
nents and production costs of DHs on the optimum
allocation of test resources and optimization criteria was
hardly affected by the number of selection stages, Nf,
and budget. Therefore, representative results on the
influence of both factors were given for two-stage
selection, B=1,000, and Nf=1 (Table 3). An increase in
the non-genetic variance from VC1 to VC3 resulted in a
reduction in N1

* and an increase in Lj
* for

DĜ�k ; P̂ �k ð5%Þ; and P̂ �k ð1%Þ: For P̂ �k ð0:1%Þ; N �1 was also
reduced with increasing non-genetic variance, but N2

*

increased and Lj
* was fairly stable. The optimum allo-

cation of test resources based on the same VC but dif-
ferent optimization criteria differed largely for small
values of q (q=0.1%) and large non-genetic variance
(VC3). For instance, for VC3 and C=0.5 the optimum
number of lines Nj

* was approximately doubled and the
optimum number of locations Lj

* was halved for
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P̂ �k ð0:1%Þ in comparison with DĜ�k : In addition,
DĜ�k ; P̂ �k ð5%Þ; P̂ �k ð1%Þ; and P̂ �k ð0:1%Þ were reduced by
approximately 25, 35, 65, and 70%, respectively, with

increasing non-genetic variance. For C=1 compared
with C=0, Nj

* decreased about 50%, whereas Lj
* chan-

ged only slightly. The reduction in DĜ�k and P̂ �k ðqÞ for
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Fig. 2 a Selection gain DĜ1; b probability P̂1ð1%Þ of identifying one
line with a genotypic value belonging to the 1% best genotypes of
the population, c, d corresponding standard deviation

SDDĜ1
and SD

P̂1ð1%Þ; respectively, as a function on the number of
locations for one-stage selection assuming C=0.5, and Nf=1. For
explanation of abbreviations, see Table 1

Table 2 Optimum allocation of test resources maximizing selection gain ðDĜ�kÞ; values of DĜ�k ; and corresponding probabilities P̂kðqÞ of
identifying Nf lines with genotypic values belonging to the 5, 1, and 0.1% best genotypes of the population assuming C=0.5 and VC2. For
explanation of abbreviations, see Table 1

Assumptions Optimum allocation Selection gain Corresponding probabilities P̂kðqÞ

ka Nf B N1
* N2

* L1
* L2

* DĜ�k SDb P̂kð5%Þ SDb P̂kð1%Þ SDb P̂kð0:1%Þ SDb

1 1 200 44 – 4 – 1.42 0.81 0.39 0.49 0.13 0.34 0.02 0.14
1 1 1,000 133 – 7 – 1.85 0.76 0.60 0.49 0.27 0.44 0.05 0.22
1 1 5,000 588 – 8 – 2.22 0.74 0.78 0.42 0.44 0.50 0.12 0.32
1 5 200 57 – 3 – 1.08 0.36 0.25 0.20 0.07 0.11 0.01 0.04
1 5 1,000 222 – 4 – 1.52 0.36 0.43 0.23 0.16 0.16 0.03 0.07
1 5 5,000 769 – 6 – 1.92 0.35 0.64 0.22 0.30 0.21 0.06 0.11
2 1 200 93 10 1 6 1.68 0.78 0.52 0.50 0.21 0.40 0.04 0.19
2 1 1,000 298 17 2 15 2.20 0.70 0.79 0.41 0.42 0.49 0.10 0.30
2 1 5,000 1,560 50 2 22 2.64 0.67 0.94 0.06 0.68 0.22 0.25 0.19
2 5 200 90 16 1 4 1.25 0.37 0.31 0.21 0.09 0.13 0.01 0.05
2 5 1,000 461 44 1 7 1.80 0.35 0.58 0.23 0.24 0.20 0.04 0.09
2 5 5,000 1,502 83 2 15 2.30 0.32 0.84 0.17 0.48 0.23 0.12 0.15

ak=1, one-stage selection; k=2, two-stage selection
bSD=standard deviation of estimates among runs
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C=1 versus C=0 was small, and ranged from
5% DĜ�k
� �

to 30% P̂ �k ð0:1%Þ
� �

:

Discussion

The selection gain (DGk) is the most widely used crite-
rion to optimize selection processes, but an infinite
sample size was assumed in most studies (Cochran 1951;
Hanson and Brim 1963; Utz 1969; Tomerius 2001;
Grüneberg et al. 2004). As breeding populations nor-
mally are relatively small, we determined DGk for finite
sample sizes. However, both assumptions result in sim-

ilar optimum allocations and marginally reduced gains
for the finite sample case (Cochran 1951; Finney 1966;
Utz 1969). We compared DGk with an alternative opti-
mization criterion, the probability Pk(q) of identifying
superior genotypes. Both DGk and Pk(q) were estimated
by Monte Carlo simulations for one- and two-stage
selection, assuming a Gaussian normal distribution of
(1) genotypic and (2) phenotypic values. Experimental
verification of the latter assumption requires a large
population size in view of the low power of statistical
tests for deviations from a Gaussian normal distribu-
tion. However, an extremely extensive QTL mapping
experiment in maize (Schön et al. 2004) with testcross

Table 3 Optimum allocation of test resources maximizing selection gain DĜ�k or probability P̂ �k ðqÞ of identifying one line (Nf=1) with a
genotypic value belonging to the 5, 1, and 0.1% best genotypes of the population for two-stage selection assuming B=1,000. For
explanation of abbreviations, see Table 1

Assumptions Optimum allocation

OC
a

SD
b

VC C N1
* N2

* L1
* L2

*

DĜ�k
1c 0 739 29 1 9 2.59 0.63

0.5 498 28 1 9 2.51 0.63
1 396 23 1 9 2.44 0.64

2d 0 660 34 1 10 2.26 0.73
0.5 298 17 2 15 2.20 0.70
1 251 19 2 13 2.16 0.70

3e 0 346 22 2 14 1.89 0.80
0.5 224 12 3 18 1.85 0.78
1 199 12 3 17 1.82 0.78

P̂ �k ð5%Þ
1 0 760 30 1 8 0.93 0.25

0.5 480 31 1 9 0.92 0.27
1 350 30 1 10 0.90 0.30

2 0 620 38 1 10 0.80 0.40
0.5 293 19 2 14 0.78 0.41
1 257 19 2 12 0.76 0.43

3 0 580 35 1 12 0.61 0.49
0.5 271 23 2 14 0.60 0.49
1 254 17 2 14 0.58 0.49

P̂ �k ð1%Þ
1 0 739 29 1 9 0.66 0.47

0.5 480 31 1 9 0.61 0.49
1 392 27 1 8 0.56 0.50

2 0 690 31 1 10 0.46 0.50
0.5 312 20 2 11 0.42 0.50
1 257 19 2 12 0.40 0.49

3 0 667 37 1 9 0.28 0.45
0.5 288 28 2 10 0.27 0.44
1 271 17 2 11 0.26 0.44

P̂ �k ð0:1%Þ
1 0 832 24 1 7 0.21 0.41

0.5 538 32 1 6 0.17 0.38
1 427 29 1 5 0.15 0.35

2 0 760 40 1 6 0.12 0.32
0.5 526 35 1 6 0.10 0.30
1 412 35 1 5 0.09 0.28

3 0 730 45 1 6 0.06 0.24
0.5 480 35 1 8 0.06 0.23
1 395 42 1 5 0.05 0.21

aOC=optimization criterion
bSD=standard deviation of estimates among runs
cVC1=1:0.25:0.25:0.5:1
dVC2=1:0.5:0.5:1:2
eVC3=1:1:1:2:4
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progenies of 976 F5 lines evaluated in 19 locations pro-
vided no evidence that phenotypic means for yield
deviated from a Gaussian normal distribution. Likewise,
the large number of detected QTL with small effects
resulted in an approximative Gaussian normal distri-
bution of genotypic values due to the Central Limit
Theorem (Schön et al. 2004). Nevertheless, further re-
search is needed to check the assumptions on probability
distributions. DH populations should be an excellent
tool for this purpose, because natural selection during
inbreeding is minimized, if selection during in vivo
haploid induction can be neglected.

We chose an accuracy of 0.01 for the optimization
criteria to limit the number of simulation runs to a
manageable number. Increasing the accuracy up to
0.0001 would require 5,000,000–600,000,000 simulation
runs. However, the length of the resulting optimum
allocation interval for an accuracy of 0.01 is only a
minor problem for practical breeding purposes due to
the extremely flat response curves.

Comparison of optimization criteria

In a first step, we compare the two optimization criteria
under the assumption of no non-genetic variance (h2=1)
and one-stage selection (Fig. 3), because two-stage
selection offers advantages only for h2 < 1. Our simu-
lation results for DĜ1 and SDDĜ1

were in harmony with
means and standard deviations of order statistics
(Pearson and Hartley 1972). For P̂1ðqÞ the results were in
agreement with those reported by Robson et al. (1967,
Appendix 6 and Table 2). Thus, our Monte Carlo sim-
ulations were sufficiently accurate to estimate DGk and
P1(q). Furthermore, simulations can provide estimates
for SDDG2

; P2(q), SDP1ðqÞ; and SDP2ðqÞ; which were not
reported in previous studies.

The response curves of both optimization criteria
illustrated that the slopes decreased with an increasing
number of lines (Fig. 3). This corroborates the well-
known relationship that a linear increase in DG1 requires
an exponential increase in N1 (Becker 1993). The choice
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of q had a strong influence on the curve of P̂1ðqÞ; espe-
cially its slope. Response curves of P̂1ð5%Þ and P̂1ð1%Þ
were similar in shape to the curve of DĜ1: P̂1ð25%Þ in-
creased rapidly between 2 and 20 lines reaching for N1

> 20 a 100% probability that the selected genotype
belongs to the best 25% of the population. In contrast,
the response curve of P̂1ð0:1%Þ was almost linear with a
low slope. Thus, for N1=1,000 the probability that the
selected genotype belongs to the best 0.1% of the pop-
ulation was still smaller than 65%. Consequently, for
obtaining DHs with large genotypic values, a very large
number N1 of initial lines must be tested, which is in
harmony with results of Robson et al. (1967), Johnson
(1989), and Knapp (1998). In addition to rarely occur-
ring positive recombinants, this result may explain that
outstanding inbreds are identified only seldom in prac-
tice because the choice of N1 is commonly much smaller
than required. P̂kð25%Þ will be disregarded in our further
discussion, because of being close to one.

In practice, selection is based on phenotypic and not
on genotypic values and, thus, heritability is smaller than
one. The influence of the different optimization criteria
on the optimum allocation of test resources was hardly
affected by the number of selection stages. Hence, only
results for two-stage selection are discussed. Optimum
allocation of test resources differed for the two optimi-
zation criteria and also for values of q, especially under
large non-genetic variance (Table 3). The closest agree-
ment between the optimum allocation of test resources
maximizing P̂kðqÞ and DĜk was observed for q=5%.
With decreasing values of q, an increased N1

* and a
decreased Lj

* were observed. Nevertheless, values of
P̂ �k ðqÞ differed only slightly from P̂kðqÞ at the optimum
allocation of test resources with regard to DĜk: For in-
stance, P̂ �2 ð0:1%Þ � P̂2ð0:1%Þ was below 0.01 for two-
stage selection, B=1,000, Nf=1, VC2, and C=0.5
(Tables 2, 3). This can be explained by the flat response
curves of DĜk and P̂kðqÞ in the vicinity of the maximum
(Fig. 2). For DĜk; it is attributable to the small slopes of
the curves of h2 for increased Lj, and ia for decreased a
(Becker 1993). For P̂kðqÞ; these findings are due to the
small slopes of the curves of (1) h2 and (2) the probability
that genotypes belonging to the q%best genotypes of the
population are among the lines for decreased a (Fig. 3).

The concept of DGk is based on the superiority of the
selected genotypes in comparison with their unselected
base population. In contrast, Pk(q) reflects the chance of
developing competitive varieties that are better than
the existing ones. To have a realistic chance of identi-
fying a superior genotype, Pk(q) should be greater than
75%, permitting only q values of about 5% for the
budgets considered. The choice of the optimization cri-
terion for these q values is not crucial, because the
optimum allocation of test resources differed only
slightly from those obtained by applying DĜk: For small
values of q, different allocation optima were obtained
for DĜk and P̂kðqÞ; but probabilities P̂kðqÞ were too low
to be recommended as optimization criterion for the
budgets investigated. Extending the formula of P1(q)

given by Robson et al. (1967) to multi-stage selection
could facilitate the optimum allocation of resources
based on Pk(q) due to a drastic reduction in computation
time.

Standard deviations of optimization criteria

The choice of q had a large influence on the curves of
SDP̂1ðqÞ (Fig. 3). For instance, SDP̂1ð25%Þ decreased rap-
idly between 2 and 20 lines and reached zero for N1=40,
whereas SDP̂1ð0:1%Þ increased up to a maximum at
N1=700 and decreased slightly thereafter. These differ-
ences can be explained by the binomial nature of Pk(q)
with genotypes surpassing the defined threshold or not.
Thus, SDP̂kðqÞ assumed its maximum for P̂kðqÞ ¼ 0:5: In
contrast, the response curve of SDDĜ1

decreased con-
tinuously with an increasing number of lines (Fig. 3) and
test locations (Fig. 2). The small differences between
values of SDDĜ1

for varying budgets (Fig. 2) can be ex-
plained by the small negative slope of SDDĜ1

for
increasing values of N1 (Fig. 3). As the curves of the
optimization criteria were flat in the vicinity of the
maximum (Fig. 2), their respective SD could serve as a
secondary optimization criterion. However, curves of
SD were also flat in the vicinity of the maximum of the
optimization criteria, thus limiting their usefulness as
additional optimization criterion.

Economic frame, quantitative-genetic parameters,
and selection strategies

To assess their relative importance, the economic frame
and quantitative-genetic parameters were varied in a
range relevant for maize. Production costs C of DHs
covered the entire range from recently established
(C=1) to further improved (C=0) DH technology, with
C=0.5 corresponding to the actual costs in breeding
companies advanced in the DH technique (Seitz,
personal communication). The budget in our study can
either refer to the resources available for evaluating the
progenies of one cross (B=200 � 1,000) or a complete
breeding program (B=5,000). For instance, considering
the evaluation of 100 DH lines for each cross in two
locations, 200 plots are required for 1 cross, and 5,000
plots for 25 crosses. The optimization of a complete
breeding program would, however, require the
assumption of equal means and segregation variances
for progenies from different crosses. As these parameters
usually differ among crosses (cf. Mihaljevic et al. 2004),
optimization of breeding programs including these
population parameters would be very promising but
requires additional research.

The choice of Nf in this study reflects two situations.
Commonly, numerous crosses are completely rejected
before final evaluation and only few lines are selected in
each of the remaining crosses. Thus, Nf=1 represents a
reasonable compromise for one specific cross. In con-
trast, in a complete breeding program, typically several
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lines are finally selected. Consequently, Nf=1 seems
appropriate for B=200 � 1,000 but Nf=5 for B=5,000.

For selection among genetically fixed lines, both
optimization criteria depend on a=Nf/N1 and h2. Vari-
ation in the budget or production costs of DHs mainly
influenced a and, to a lesser extent, h2. The budget was
the major factor influencing values of both optimization
criteria by its strong influence on a (Table 2). In con-
trast, production costs of DHs had only a minor effect
on both optimization criteria. This can be explained by
small changes in (1) a in comparison to changes of a for
different budgets and (2) h2 (Tables 2, 3). The slight
trend towards larger values of Lj

* for C=1 versus C=0
reflects the fact that rejection of more expensive lines
should be based on more reliable information.

The variance components were chosen according to
recent estimates from large series of experiments within a
broad sample of Central European maize breeding pop-
ulations including DH populations (VC2, Gordillo and
Geiger 2004), reflecting the typical situation for breed-
ing programs with adapted maize populations. Vari-
ance components affect h2 directly, and with VC3 the
reduced h2 could only partly be compensated by
increased values of Lj

* with a parallel reduction in N1
*.

Altogether, we found a large reduction in values of
P̂kð1%Þ and P̂kð0:1%Þð> 50%Þ with increased non-genetic
variance. This is in accordance with previous studies
(Keuls and Sieben 1955; Robson et al. 1967; Johnson
1989; Knapp 1998) analyzing the problem to identify
superior genotypes under high non-genetic variance.
Summarizing, our results underline the high impact of
VC on the optimum allocation of resources with alter-
native breeding strategies.

Breeding is a continuous process and every year a
new breeding cycle is initiated. Under this assumption,
the annually available budget, for all cycles running in
parallel is equal to the budget available for one entire
cycle (Utz 1969). Consequently, comparisons between
one- and two-stage selection can be made directly
without dividing the optimization criteria by the years
required in the selection strategy. Two-stage selection
with optimum allocation of resources allows the evalu-
ation of a large number of lines N1 in a small number of
test locations L1. The N2 lines selected in stage one are
further evaluated in a large number of test locations L2

to ascertain a high accuracy of the test results. This
guarantees a low a and high h2 and increases conse-
quently both optimization criteria. In addition, response
curves of the optimization criteria were flatter for two-
stage selection than for one-stage selection, reducing the
risk of choosing a non-optimal allocation. However,
with one-stage selection breeders could exploit 1 year
earlier the progress of selection by improved DH lines
and hybrids developed from them.

Values of DĜk and P̂kðqÞ increased roughly to the
same extent by (1) two-stage instead of one-stage selec-
tion, (2) a fivefold increase in the budget (B=200 to
B=1,000), (3) a reduction in Nf from five to one, or (4)
a quarter reduction in the non-genetic variance (VC1

instead of VC3). Except for the last factor, which is
determined by the breeding material and target envi-
ronments, all other factors can be chosen in favor of an
increased selection response, but at the expense of a
longer duration of the selection strategy (two-stage
selection), higher costs (larger budget), and a higher risk
of the final outcome (larger SD for Nf=1). In particular,
our results demonstrate that employing two-stage
instead of one-stage selection represents a promising
alternative to an increased budget.

Conclusions

The production costs of DHs had only a minor effect on
the optimum allocation of breeding resources. Even if
the current DH production using in vivo haploid induc-
tion is still relatively expensive, the compensation
obtained through a reduced number of initial lines
recommends their application. AsDH costs are decreasing
owing to expected improvements in the DH technique in
the future, they will be only of secondary importance
regarding the optimum allocation of resources.

For two-stage selection, a budget of approximately
1,000 field plot equivalents, and actual production costs
of DHs, the allocation of test resources is roughly close to
its optimum, if (1) the selected fraction a1=N2/N1 is
smaller than 0.10, (2) the number of test locations at the
final selection stage exceeds at least six, and (3) about
three quarters of the budget are invested in the first stage.

We attained a reasonable probability of success with
continuous breeding for q values of about 5%. In these
cases, the choice of the optimization criterion was rela-
tively unimportant. However, for very large budgets the
small probability of identifying outstanding genotypes is
maximized if the number of lines is increased at the ex-
pense of the number of test locations. Optimization of
complete breeding programs based on DHs is very
promising, but selection theory must be extended for
selection among and within crosses, consideration of
different number and types of testers, and tests for line
per se performance.
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